
Biomedical Signal Processing and Control 71 (2022) 103178

Available online 17 September 2021
1746-8094/© 2021 Elsevier Ltd. All rights reserved.

ARF-Net: An Adaptive Receptive Field Network for breast mass 
segmentation in whole mammograms and ultrasound images 

Chunbo Xu , Yunliang Qi , Yiming Wang , Meng Lou , Jiande Pi , Yide Ma * 

School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China   

A R T I C L E  I N F O   

Keywords: 
Segmentation 
Mammogram 
Ultrasound image 
Deep learning 
Encoder-decoder 

A B S T R A C T   

UNet adopting an encoder-decoder structure has been used widely in medical image segmentation tasks for its 
outstanding performance. However, in our work, we find that UNet has the worse segmentation performance of 
small masses. The reason behind this is that the sizes of receptive fields are limited. In this work, to address this 
issue, we develop a novel end-to-end model, Adaptive Receptive Field Network (ARF-Net), for the precise breast 
mass segmentation in whole mammographic images and ultrasound images. ARF-Net composes of an encoder 
network and a corresponding decoder network, followed by a pixel-wise classifier. In ARF-Net, a Selective 
Receptive Filed Module (SRFM) is proposed to allocate the suitable sizes of receptive fields to the breast masses 
of different sizes. SRFM consists of a Multiple Receptive Field Module (MRFM) for generating multiple receptive 
fields of different sizes and a Multi-Scale Selection Module (MSSM) for selecting the suitable sizes of receptive 
fields based on the objects’ size. The proposed ARF-Net achieves the dice index of 86.1%, 85.75%, and 88.12% 
on the two mammographic databases (INbreast and CBIS-DDSM) and one ultrasonic database (UDIAT), 
respectively. Moreover, extensive ablation experiments show that ARF-Net transcends several state-of-the-art 
segmentation networks, and the developed MSSM exceeds several counterparts.   

1. Introduction 

Due to its extensiveness and high mortality rate, breast cancer has 
become one of the most common cancer types diagnosed among women. 
It is the second-highest cause of death among women and leads to the 
second-largest number of deaths in women worldwide. The statistics 
released by the International Agency for Research on Cancer (IARC) in 
December 2020 reveal that breast cancer is responsible for one in six of 
all cancer deaths among women. According to the American Cancer 
Society, if breast cancer is detected in the early stage, the 5-year relative 
survival rate is 99%. Hence, to decrease the mortality of breast cancer, 
the early diagnosis and detection of breast cancer is essential. For early 
diagnosis, medical imaging plays a crucial role. Digital mammography is 
primarily utilized for the diagnosis of breast cancer. To read mammo
grams requires experienced and well-trained radiologists. However, 
even a well-trained expert might have an inter-observer variation rate. 
Thus, computer-aided diagnosis (CAD) could be developed to assist ra
diologists in breast classification and detection tasks [14,35]. 

Breast masses in mammograms are a common clinical sign of breast 
cancer. The nature of breast masses can offer a considerable reference 

for follow-up treatment. Generally speaking, compared with the breast 
mass with regular shape, the breast mass with irregular shape is more 
likely to be malignant. Hence, the masses segmentation in whole 
mammograms is a crucial procedure of breast cancer CAD systems and is 
the key to further qualitative analysis of breast cancer. But the breast 
masses have various sizes, shapes, and locations, bringing a lot of 
challenges to accurate mass segmentation. 

In the past few decades, many traditional breast mass segmentation 
approaches have been developed. These conventional methods can be 
divided into region-based algorithms [17,25], contour-based algorithms 
[42,58], and clustering algorithms [7]. It is noteworthy that the features 
used in conventional algorithms are hand-crafted. For example, Men
cattini et al. [33] developed a modified region-based segmentation 
approach for reducing the computational cost and improving efficiency. 
In the work of Patel et al. [41], they proposed an adaptive k-means 
clustering method for breast lesion segmentation. In the work of Dal
miya et al. [13], the wavelet transformation and k-means clustering 
were used for breast mass segmentation. Hao et al. [18] proposed a 
hybrid method combining a random walks method and Chan-Vese active 
contour for breast mass segmentation in the mammographic images. 
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However, the performance of the traditional methods is restricted by 
hand-crafted features which are dependent on the designer’s profes
sional skills and knowledge. 

We are in the Deep Learning (DL) era. With the help of DL, especially 
Convolution Neural Network (CNN), computer vision has achieved great 
development. Object classification, object detection, and semantic seg
mentation are three fundamental tasks in computer vision. There are 
many DL models proposed for solving these tasks. For example, ResNet 
[21], ResNeXt [60], Res2Net [16], and Inceptionv1-v4 [24,55–57] for 
image classification; FCN [31], SegNet [3], DeepLabv1-v3plus [9–12], 
and PSPNet [65] for semantic segmentation; Faster RCNN [48], SSD 
[30], Mask RCNN [20], and YOLOv1-v4 [4,45–47] for object detection. 

Recently, DL techniques have been widely applied to medical image 
processing due to their excellent performance. For example, Mohamed 
et al. [34] proposed a CNN-based approach for the classification of 
mammogram density. In the work of Al-Masni [2], a YOLO-based CAD 
system is proposed for the detection and classification of breast cancer 
lumps simultaneously. In the work of Abdelhafiz et al. [1], for the seg
mentation of breast mass in mammograms, they designed RU-Net by 
integrating the residual attention modules into the UNet. Moreover, a 
ResNet classifier following RU-Net was used for the classification of 
segmented masses as malignant or benign. Rampun et al. [43] proposed 
a modified holistically-nested edge detection model which was equipped 
with multi-scale and multi-level learning. Xu et al. [61] developed a 
multi-channel, multi-scale FCN for mass segmentation in mammograms. 

As we all know, YOLOv3 [47] employs the feature layers of three 
different scales to predict boxes. The feature layer of the large scale is 
used to detect small objects and the feature layer of the small scale is 
used to detect large objects. The reason behind is that the size of the 
receptive field at the large-scale feature layer is small and the size of the 
receptive field at the small-scale feature layer is large. The receptive 
field of large size should be utilized to detect objects of large size. On the 
contrary, the receptive field of small size should be utilized to detect 
objects of small sizes. For the breast mass segmentation in whole 
mammograms and breast ultrasound images, the breast mass has a va
riety of sizes and shapes. Therefore, the idea of multiple receptive fields 
is useful for boosting the performance of breast mass segmentation. 

In this paper, the main contributions of our work mainly include:  

• An Adaptive Receptive Field Network (ARF-Net) is proposed for 
precise breast mass segmentation in whole mammographic images 
and ultrasound images.  

• A Selective Receptive Field Module (SRFM) in ARF-Net is proposed 
to select the approximate size of receptive field for the breast masses 
of different sizes. A SRFM is composed of a Multiple Receptive Field 
Module (MRFM) and a Multi-Scale Selection Module (MSSM). The 
MRFM is proposed to generate multiple receptive fields of different 
sizes. The MSSM is proposed to allocate the approximate size of the 
receptive field for the breast masses of different sizes.  

• The ARF-Net is evaluated based on two mammographic databases 
(CBIS-DDSM [27] and INbreast [36]) and one ultrasonic database 
(UDIAT [63]). The ARF-Net obtain the dice index of 85.75%,86.1%, 
and 88.12% on CBIS-DDSM, INbreast, and UDIAT benchmarks 
respectively, which outperforms the state-of-the-art approaches.  

• The ablation experiments demonstrate that our designed model is 
equipped with robustness and can learn generalizable 
representations. 

The organizational structure of this paper is as follows. The related 
works are depicted in Section 2. Section 3 elaborates on our developed 
approaches. The experiments are detailedly depicted in Section 4. Sec
tion 5 elaborates on the ablation studies. The conclusions are presented 
in Section 6. 

2. Related works 

The mass segmentation in the whole mammographic images mainly 
suffers from the challenges of two aspects: the breast mass with various 
shapes and sizes and the interference of the normal parenchymal region. 
Last few years, several works have been developed for solving the 
aforementioned two problems. These works are elaborated as follows. 

In the work of Sun et al. [54], they designed an attention-guided 
dense-upsampling network to segment the mass in whole mammo
graphic images directly. Moreover, the attention-guided dense-upsam
pling block, which used a channel-attention approach to refine the 
features, was also proposed. However, the channel-attention method 
used in their work only used a single-scale feature, namely, global 
average-pooling feature content. Ravitha et al. [44] developed a deeply 
supervised U-Net (DS-UNet). They first used a contrast-limited adaptive 
histogram equalization approach to pre-process the input mammo
grams. Then the pre-processed images were fed into the DS-UNet. 
Finally, the output segmentation map was refined by dense condi
tional random fields. However, their method was not end-to-end. In the 
work of Chen et al. [8], they proposed a multi-scale adversarial network 
including a segmentation network (an improved U-Net) for generating 
the suspicious regions’ mask and a discrimination network for 
discriminating the input masks to segment the breast mass in the whole 
mammograms. The integration of Earth-Mover distance and weighted 
cross-entropy loss was employed as object function during training to 
generate better segmentation results and alleviate the unbalanced class 
issue. In the work of Wang et al. [59], a developed effective attention 
method was incorporated into U-Net being as a generator network and 
made U-Net more focus on the breast mass in whole mammograms. A 
CNN with a multi-scale pooling module was used as a discriminator 
network for learning punctilious features from the breast masses with 
various sizes and shapes. Nevertheless, the last two methods had the 
disadvantage of training difficultly. For example, in the work of Chen 
et al. [8], the spectral normalization was used to stabilize the training 
process of their model. 

The receptive field of large size is used suitably to recognize the large 
object. On the contrary, the receptive field of small size is used suitably 
to recognize the small object. If the receptive field of large size is used to 
recognize the small object, the irrelevant information is introduced; If 
the receptive field of small size is used to recognize large objects, most of 
the information about objects is lost. Therefore, choosing the appro
priate receptive field’s size for the breast masses of different sizes is 
crucial, which can boost the performance of breast mass segmentation in 
whole mammograms. 

In this work, an Adaptive Receptive Field Network (ARF-Net) is 
proposed for precise mass segmentation in whole mammographic im
ages. In ARF-Net, we propose a Selective Receptive Field Module 
(SRFM), including Multiple Receptive Field Module (MRFM) and an 
effective Multi-Scale Selection Module (MSSM). The MRFM is designed 
for obtaining spatial information of different sizes. An effective MSSM is 
designed to select the suitable receptive field’s size for the breast masses 
of different sizes. 

3. Proposed approach 

In this part, we first introduce the overview of ARF-Net. Then, we 
first depict the designed SRFM in detail. Finally, we will elaborate on the 
overall architecture of the developed ARF-Net. 

3.1. Overview 

Our proposed ARF-Net adopts a U-shaped architecture consisting of 
an encoder network and a corresponding decoder network. In addition, 
we propose SRFM to better segment the masses of different sizes. SRFM 
is composed of MRFM and MSSM. MRFM offers receptive fields of 
different sizes to recognize the masses of various sizes. MSSM offers 
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multi-scale attention to make ARF-Net better focus on the masses of 
different sizes. Because the max-pooling operation can cause the losses 
of spatial detail formation that is conducive to improve the segmenta
tion performance, it is replaced by our proposed SRFM. 

As we all know, high-resolution feature maps play a crucial role in 
medical image segmentation tasks. In addition, there have been many 
works [19,38,49,50] that prove that the encoder-decoder architecture is 
specifically suitable for medical image segmentation. Therefore, our 
proposed ARF-Net adopts the U-shaped architecture, namely encoder- 
decoder architecture. The encoder extracts high-level semantic fea
tures by using a sequence of convolutional layers, while the decoder 
leverages skip connections to re-use high-resolution feature maps from 
the encoder in order to recover lost spatial information from high-level 
representations. 

It is well known that the diversity of the receptive field plays a vital 
role in medical image segmentation [28,29,64]. In addition, the limited 
receptive field of UNet can cause its performance bottleneck. The masses 
have different sizes in our study. Therefore, for the sake of better 
recognizing masses with different sizes, we propose MRFM consisting of 
two parallel convolutional layers with different kernel sizes which can 

generate two feature maps with different semantic information. 
The output of MRFM contains two feature maps with different se

mantic information. The masses of different sizes correspond to different 
semantic information. If the receptive field of large size is used to 
segment the mass of small size, the model is likely to pay attention to the 
noise area; If the receptive field of small size is used to segment the mass 
of large size, a lot of regions that are more relevant to the semantic in
formation of the masses may not be concerned. Thus, in order to make 
the network better segment the masses of different sizes, we propose 
MSSM to offer multi-scale attention. 

3.2. SRFM 

As shown in Fig. 1, the SRFM is composed of MRFM and MSSM. The 
MRFM consists of K parallel convolutional blocks, including a batch 
normalization (BN) layer and a rectified linear unit (ReLU) activation 
function layer in sequence. K is set to 2 in the following experiments. 
Each convolution in MRFM uses different kernel sizes. one is 3, the other 
is 5. It is noteworthy that the convolution that the kernel sizes are 5 is 
replaced by the atrous convolution with the dilation rate of 2 and the 
kernel size of 3 for improving efficiency. The MRFM makes the model 
competent for focusing on objects of different sizes by producing mul
tiple receptive fields of diverse sizes. Fig. 2(a) shows the structure of 
MRFM. 

The channel attention in SE-Net [22] re-weights each channel of 
feature maps by learning channel-wise weighting vectors from the 
global contextual contents. The channel attention can be defined as: 

Y = σ(f2(f1(g(X)))) (1)  

where σ denotes the sigmoid function. X ∈ RC×H×W refers to the input 
feature maps with the spatial size of H × W and the channel number of 
C. Y ∈ RC×H×W refers to the output feature maps. The g(X) =

1
H×W

∑H
i=1

∑W
j=1X[:,i,j]denotes the global average pooling (GAP). f1 and f2 

denote fully-connected (FC) layers which weights are W1 ∈ RC
r×C and 

W2 ∈ RC×C
r respectively. The first FC layer f1 is followed by a BN layer 

and a ReLU layer. The second FC layer is only followed by a BN layer. 
The f1 denotes a dimensionality reduction layer and the f2 refers to a 
dimensionality increasing layer. The r refers to the channel reduction 
ratio and is set to 4 in our experiments. 

The squeeze operation in the SE module [22] transforms the input 
feature maps of spatial size C × H × W into a weighting vector of length 
C. This extremely coarse channel attention vector biases the model 

Fig. 1. The architecture of SRFM.  

Fig. 2. The architectures of MRFM and MSSM.  
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towards highlighting the large objects and ignore the small objects. 
However, the area ratio that most of the breast masses take up the whole 
mammograms is smaller than 1% in the INbreast and CBIS-DDSM 
database. Hence, the global-average attention may not be the optimal 
choice for mass segmentation in whole mammograms. To mitigate the 
problem resulting from scale variation and small objects, the method of 
aggregating the multi-scale feature information should be adopted. 

Based on the idea of aggregating the multi-scale feature information, 
apart from the global context path, we add the two local context paths in 

MSSM. The local context L(X) ∈ RC×H×W is computed via a bottleneck 
structure as follows: 

L(X) = f1×1
2 (fk×k

1 (X)) (2)  

where f1×1
2 and fk×k

1 are two different convolutions and their kernel sizes 
are C × C

r × 1 × 1 and C
r × C × k × k respectively. The first convolution 

layer fk×k
1 is followed by a BN layer and a ReLU layer and the second 

convolutional layer f1×1
2 is followed by a BN layer. The only difference 

Fig. 3. The architecture of ARF-Net.  

Fig. 4. Several mammograms. The region surrounded by a red closed curve represents the mass. Because breast masses have various sizes, the multiple receptive 
fields of different sizes should be adopted. 

Table 1 
Segmentation performance on the CBIS-DDSM benchmark. (mean±std)  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  ΔA(%)↓  HAU↓  

Sun et al. [54] 81.8 ± 0.0  – 84.9 ± 0.3  – 26.9 ± 0.3  2.96 ± 0.03  
Chen et al. [8] 82.16 99.81  85.23 99.86 –  

Ravitha et al. [44] 82.7 99.7 84.1 99.8 22.7 2.43 
Wang et al. [59] 84.49  – – – – 5.01   

Ours 85.75 ± 0.22  99.81 ± 0.0  88.91 ± 0.76  99.89 ± 0.01  14.36 ± 1.96  0.93 ± 0.46   
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between the first local context path and the second context path is the 
kernel size of the first convolution. One is 3× 3, and the other is 5× 5. It 
is noteworthy that the convolution with 5 × 5 is replaced by the dilated 
convolution with the kernel size of 3 and the dilation rate of 2 for 
improving efficiency. The structure of MSSM is described in Fig. 2(b). 

MSSM consists of three different parallel paths, including a global 
context path and two local context paths. The MSSM can be formulated 
as: 

Xsum = Xrf1 +Xrf2 (3)  

att = σ(G(Xsum)+L1(Xsum)+L2(Xsum)) (4)  

Xo = att⊗Xrf1 +(1 − att)⊗Xrf2 (5)  

where Xo is the output feature maps of SRFM. Xrf1 and Xrf2 are the output 
feature maps of MRFM. ⊗ refers to the element-wise multiplication. 

3.3. ARF-Net 

The ARF-Net comprises two networks, including an encoder network 
and a corresponding decoder network, followed by a 1 × 1 convolu
tional layer for projecting each 64-dimensional feature map to the 
number of classes and a sigmoid layer for the pixel-wise classification. 
The encoder network is composed of the repeated application of two 3 ×

3 convolutional layers, each followed by a BN layer, a ReLU layer, and a 
SRFM for down-sampling the feature maps (halving the size of feature 
maps). Each decoder in the decoder network is composed of an 
upsampling layer for up-sampling the summation of the corresponding 
feature maps from the encoder network and the output feature maps of 
the previous decoder, and two convolutional layers, each followed by a 
BN layer and a ReLU layer. The overall framework of ARF-Net is 
depicted in Fig. 3. 

4. Experiments 

In this section, we will first introduce two mammographic databases 
and one ultrasonic dataset used in our study. Secondly, the experimental 
configurations are described in detail. Thirdly, we will elaborate on the 
experimental results. Finally, the discussions and analyses are depicted 
detailedly. 

4.1. Databases 

Two publicly available mammographic databases, CBIS-DDSM [27] 
and INbreast [36], are used to conduct an evaluation of our designed 
ARF-Net in this work. CBIS-DDSM database contains curated mammo
grams from the largest publicly available mammographic dataset, DDSM 
[5]. Because the data provider has divided the CBIS-DDSM dataset into a 
training dataset and a testing dataset, we do not need to split the data
base anymore. In our experiments, 303 mammograms containing 242 
mammograms for training and 61 mammograms for validation are used. 
The INbreast database has 115 cases containing a total of 410 
mammographic images with the normal mammograms of 303, the 
cancerous mammograms of 72, and the benign mammograms of 35 
[36]. The five-fold cross-validation experiments are conducted on 
INbreast database. Several mammographic images are displayed in 
Fig. 4. 

The ultrasonic database, UDIAT [63] is also used to evaluate the 
developed ARF-Net. The UDIAT dataset [63] has a total of 163 breast 
ultrasound images with 53 cancerous images and 110 benign images. 
Each image from the UDIAT datasets only contains one mass. 

4.2. Implementation details 

Our all experiments are performed in the publicly available deep 
learning framework PyTorch [40] and run on NVIDIA RTX 2080 Ti GPU 
with 11 GB on-chip memory. Optimization is performed using AdamW 
optimizer [32]. The initial learning rate is set to 0.0001, and the itera
tions are set to 70. It is noteworthy that all the segmentation models are 
trained from scratch in the following experiments. 

In our experiments, all of the mammographic images are resized 
256 × 256 before being fed into the model. Several data augmentation 
approaches with horizontal flipping, vertical flipping, mirroring, trans
position, and random rotation are adopted to avoid over-fitting and 
enhance the model’s generalization ability. The integration of dice loss 
and binary cross-entropy (BCE) loss is used as the unified cost function 
for training the model. It is defined as: 

L = LDice +αLBCE (6)  

where α, a weight constant, is used to adjust the trade-off between the 
dice loss and the BCE loss. The α is set to 0.8. 

The dice similarity coefficient (DSC), sensitivity (SEN), specificity 
(SPE), accuracy (ACC), Hausdorff distance (HAU), and relative area 
difference (ΔA) metrics are adopted to conduct the quantitative evalu

Table 2 
Segmentation performance on the INbreast database. (mean±std)  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  ΔA(%)↓  HAU↓  

Sun et al. [54] 79.1 ± 6.0  – 80.8 ± 7.1  – 37.6 ± 15.4  4.04 ± 0.33  
Chen et al. [8] 81.64  99.43  82.72  99.56  – – 

Ravitha et al. [44] 79  98.11  81  98.4  31.1  1.86  
Wang et al. [59] 83.92  – – – – 5.81   

Ours(w/o) 85.06 ± 2.64  99.11 ± 0.58  83 ± 1.99  99.62 ± 0.22  11.56 ± 3.79  1.81 ± 0.85  
Ours(w/) 86.1 ± 2.75  99.14 ± 0.52  85.82 ± 2.97  99.54 ± 0.39  14.34 ± 5.08  1.8 ± 0.9  

w/o – train from scratch. 
w/ – with pre-training on the CBIS-DDSM benchmark. 

Table 3 
Segmentation performance on UDIAT database.  

Method DSC(%)↑  ACC 
(%)↑  

SEN(%)↑  SPE(%)↑  

Osman et al.  
[39] 

73.14 ± 29.17  – 73.21 ± 31.35  99.49 ± 0.83  

Huang et al.  
[23] 

82.4  – – – 

Ning et al. [37] 85.553 ± 1.718  – 85.211 ± 1.342  – 

Singh et al. [52] 86.82  98.22  91.55  99.49  
Lee et al. [26] 76.58  97.794  80.41  98.66  
Shareef et al.  

[51] 
82  – 84  – 

Byra et al. [6] 79.1  98.5  – – 

Su et al. [53] 82.7 ± 0.8  – – – 
Gao [15] 85.39 ± 1.63  – 88.39 ± 1.12  -  

Ours 88.12  98.84  89.44  99.36   
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ation in our study. Their mathematical definitions are as follows: 

DSC =
2 × TP

2 × TP + FP + FN
(7)  

SEN =
TP

TP + FN
(8)  

SPE =
TN

TN + FP
(9)  

ACC =
TP + TN

TP + TN + FP + FN
(10)  

ΔA =
|(TP + FP) − (TP + FN)|

TP + FN
(11)  

HAU = max(h(pred, gt), h(gt, pred) (12)  

where h(A,B) = maxa∈A{minb∈B||a − b||} and ||⋅|| denotes the euclidean 
distance between two pixels. pred refers to the predicted segmentation 
results, and gt is the ground-truth masks. 

4.3. Experimental results 

4.3.1. Results on CBIS-DDSM database 
We establish a comparison between our proposed network and 

Fig. 5. Several bad segmentation cases. (a) and (b) are from the INbreast dataset; (c) and (d) are from CBIS-DDSM dataset; (e) and (f) are from UDIAT dataset. The 
red closed curve delineates the boundary of the ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 
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several related approaches on the CBIS-DDSM benchmark. Table 1 de
picts the experimental results in detail. 

It can be found from Table 1, our proposed network exceeds the rest 
on the three evaluation metrics, with very significant DSC, SEN, and SPE 
(85.75%, 88.91%, and 99.89%, respectively), and has a substantial 
improvement of 1.26%, 3.68%, and 0.03%. It is noteworthy that our 
proposed model can remarkably enhance the true positive rate (sensi
tivity), which is essential to breast mass detection tasks. Moreover, our 
proposed approach decreases the ΔA and HAU by 8.34% and 1.5, 
separately. These experimental results show that our designed ARF-Net 
can work better for mass segmentation in whole mammograms than 
other methods and also achieve high breast mass detection accuracy. 

4.3.2. Results on INbreast database 
To confirm our proposed network’s effectiveness, it is compared with 

several related approaches on the INbreast benchmark. The experi
mental results are presented in Table 2. 

Table 2 illustrates that without any pre-training process, the DSC, 
ACC, SEN, SPE, ΔA, and HAU of our proposed model are 85.06%,

99.11%, 83%, 99.62%, 11.56%, and 1.81. With pre-training on the 
CBIS-DDSM database, our proposed approach acquires the 86.1%,

99.14%, 85.82%, 99.54%, 14.34%, and 1.8 on the DSC, ACC, SEN, 

SPE, ΔA, and HAU metrics. Therefore, we can conclude that transfer 
learning can enhance the performance of mass segmentation in whole 
mammograms. Our proposed model has an 2.18%, 3.1%, and 0.06% 
improvement in the DSC, SEN, and SPE when compared to other 
methods. Notably, our proposed approach improves the true positive 
rate significantly. There is an enormous reduction of the ΔA and HAU by 
19.54% and 0.06. The experimental results demonstrate that ARF-Net is 
more robust and effective when compared against other networks. 

4.3.3. Results on UDIAT database 
Table 3 summarizes the segmentation results of our designed ARF- 

Net and several related approaches. 
Our proposed ARF-Net obtains a better performance of DSC and ACC 

than several related approaches and has the improvements of 1.3% and 
0.34%. Because a false negative will decrease the possibility of early 
diagnosis, detection, and treatment of breast cancer and the true positive 
rate (sensitivity) is essential to breast mass detection tasks, the true 
positive rate is vitally crucial. On the sensitivity measurement, our 
proposed ARF-Net attains 89.44% and is only second to the approach of 
Singh et al. [52]. In conclusion, our proposed ARF-Net also generalizes 
well on UDIAT. 

4.4. Discussions and analyses 

Fig. 5 shows six bad segmentation cases. Two bad segmentation cases 
(a) and (c) arise from the high-density region in whole mammograms. 
Breast masses are covered with high-density areas in whole mammo
graphic images. The bad case (b) is caused by the pectoral muscle. The 
brightness of some breast masses is the same as the pectoral muscle in 
the mammograms. The bad case (d) results from the incorrect ground 
truth mask. There are many coarse ground-truth labels in the CBIS- 
DDSM dataset. The bad segmentation example (f) is likely caused by 
the breast fatty tissue (Breast fat appears dark gray on breast ultrasound 
images). The cysts and ducts are likely the reasons for the bad seg
mentation case (e). 

Table 4 
Comparison between the developed network and several state-of-the-art segmentation network on the INbreast database. (mean±std)  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  ΔA(%)↓  HAU↓  

UNet [49] 70.05 ± 3.24  98.43 ± 0.63  70.87 ± 3.7  99.31 ± 0.28  30.27 ± 12.63  5.12 ± 1.44  
Attention-UNet [38] 82.8 ± 5.21  98.97 ± 0.76  79.81 ± 4.07  99.64 ± 0.29  16.06 ± 5.12  2.83 ± 1.25  
DeepLabv3Plus [12] 76.4 ± 4.36  98.76 ± 0.67  72.1 ± 5.01  99.54 ± 0.34  22.38 ± 5.88  4.07 ± 1.74  

FCN [31] 79.3 ± 5.74  98.76 ± 0.97  76.04 ± 3.09  99.51 ± 0.54  18.46 ± 7.54  2.47 ± 0.56  
UNetPlusPlus [19] 81.75 ± 4.8  98.94 ± 0.72  78.25 ± 5.02  99.63 ± 0.28  15.99 ± 5.84  2.8 ± 1.16  

scSENet [50] 83.31 ± 4.6  98.93 ± 0.85  80.79 ± 1.67  99.54 ± 0.51  14.65 ± 6.9  2.28 ± 0.94   

Ours(w/o) 85.06 ± 2.64  99.11 ± 0.58  83 ± 1.99  99.62 ± 0.22  11.56 ± 3.79  1.81 ± 0.85  
Ours(w/) 86.1 ± 2.75  99.14 ± 0.52  85.82 ± 2.97  99.54 ± 0.39  14.34 ± 5.08  1.8 ± 0.9  

w/o – train from scratch. 
w/ – with pretraining on CBIS-DDSM. 

Table 5 
Comparison between the developed network and several state-of-the-art segmentation network on the CBIS-DDSM database. (mean±std)  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  ΔA(%)↓  HAU↓  

UNet [49] 79.41 ± 2.08  99.74 ± 0.02  80.48 ± 4.99  99.88 ± 0.02  20.66 ± 2.33  2.66 ± 0.34  
Attention-UNet [38] 84.3 ± 0.36  99.8 ± 0.0  87.14 ± 0.85  99.89 ± 0.0  18.75 ± 2.0  1.91 ± 0.47  
DeepLabv3Plus [12] 78.59 ± 1.75  99.74 ± 0.02  80.25 ± 2.82  99.88 ± 0.01  21.27 ± 3.29  2.44 ± 2.85  

FCN [31] 80.98 ± 0.24  99.76 ± 0.01  81.7 ± 1.03  99.89 ± 0.01  20.44 ± 0.81  1.61 ± 0.11  
UNetPlusPlus [19] 83.05 ± 0.37  99.78 ± 0.0  86.99 ± 0.89  99.88 ± 0.0  18.99 ± 0.69  2.02 ± 0.18  

scSENet [50] 84.34 ± 0.13  99.8 ± 0.0  88.67 ± 1.39  99.88 ± 0.01  19.39 ± 0.31  1.51 ± 0.47   

Ours 85.75 ± 0.22  99.81 ± 0.0  88.91 ± 0.76  99.89 ± 0.01  14.36 ± 1.96  0.93 ± 0.46   

Table 6 
Comparison between the developed ARF-Net and several state-of-the-art seg
mentation network on the UDIAT database.  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  

UNet [49] 80.09  98.34  81.31  99.2  
Attention-UNet [38] 80.64  98.35  81.09  99.12  
DeepLabv3Plus [12] 77.36  98.08  78.09  98.99  

FCN [31] 83.39  98.43  83.94  99.1  
UNetPlusPlus [19] 79.45  98.06  86.27  98.64  

scSENet [50] 84.86  98.52  86.36  99.09   

Ours 88.12  98.84  89.44  99.36   
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Fig. 6. The visualization results of our proposed ARF-Net and several well-known segmentation models on the CBIS-DDSM benchmark. The red closed curve de
lineates the boundary of the ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 
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Fig. 7. The visualization results of our proposed ARF-Net and some excellent segmentation models on the INbreast benchmark. The red closed curve delineates the 
boundary of the ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 
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Fig. 8. The visualization results of our proposed ARF-Net and several well-known segmentation models on the UDIAT benchmark. The red closed curve delineates 
the boundary of the ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 
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5. Ablation studies 

In this section, we will first compare the designed model against 
several excellent segmentation models. Then, we compare the 

developed MSSM with several well-known channel attention modules. 
Finally, we will analyze the speed of the proposed model. 

5.1. Comparison with other state-of-the-art methods 

We compare the developed ARF-Net against several state-of-the-art 
semantic segmentation networks including UNet [49], Attention-UNet 
[38], DeepLabv3Plus [12], FCN [31], UNetPlusPlus [19], and scSENet 
[50] to further prove its effectiveness and performance. In order to 
provide a fair comparison, we first access their public implementations 
and then re-train their models on our databases to obtain the segmen
tation results of compared methods. Tables 4–6 depict the results of the 
quantitative comparison on the INbreast, CBIS-DDSM, and UDIAT da
tabases, respectively. 

Table 7 
Comparison between our proposed MSSM and several counterparts on the INbreast dataset. (mean±std)  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  ΔA(%)↓  HAU↓  

SE Module [22] 83.54 ± 4.16  98.96 ± 0.81  82.85 ± 1.56  99.45 ± 0.64  17.71 ± 10.01  1.9 ± 0.79  
GCT [62] 83.11 ± 4.19  99 ± 0.77  79.82 ± 3.71  99.58 ± 0.45  15.11 ± 5.43  2.74 ± 1.06   

Ours(w/o) 85.06 ± 2.64  99.11 ± 0.58  83 ± 1.99  99.62 ± 0.22  11.56 ± 3.79  1.81 ± 0.85  
Ours(w/) 86.1 ± 2.75  99.14 ± 0.52  85.82 ± 2.97  99.54 ± 0.39  14.34 ± 5.08  1.8 ± 0.9  

w/o – train from scratch. 
w/ – with pre-training on the CBIS-DDSM benchmark. 

Table 8 
Comparison between our proposed MSSM and several counterparts on the CBIS-DDSM benchmark. (mean±std)  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  ΔA(%)↓  HAU↓  

SE Module [22] 84.04 ± 0.23  99.79 ± 0.01  86.19 ± 0.51  99.89 ± 0.01  17.53 ± 1.01  1.71 ± 0.08  
GCT [62] 84.04 ± 0.1  99.8 ± 0.01  86.49 ± 1.04  99.89 ± 0.01  18.2 ± 0.98  2.36 ± 0.01   

Ours 85.75 ± 0.22  99.81 ± 0.0  88.91 ± 0.76  99.89 ± 0.01  14.36 ± 1.96  0.93 ± 0.46   

Table 9 
Comparison between our proposed MSSM and several counterparts on the 
UDIAT benchmark.  

Method DSC(%)↑  ACC(%)↑  SEN(%)↑  SPE(%)↑  

SE Module [22] 84.43  98.56  84.8  99.15  
GCT [62] 84.87  98.56  87.3  99.06   

Ours 88.12  98.84  89.44  99.36   

Fig. 9. The visualization results of our proposed MSSM and several counterparts on the CBIS-DDSM benchmark. The red closed curve delineates the boundary of the 
ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 
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As is depicted in Table 4, compared to several state-of-the-art seg
mentation approaches, the DSC, ACC, and SEN of our designed model 
have an improvement of at least 2.79%, 0.17%, and 5.03% on the 
INbreast database. Besides, the ΔA and HAU are reduced significantly by 
at least 3.09% and 0.48, respectively, in comparison with other seg
mentation methods for the INbreast dataset. Table 5 shows that our 

proposed network offers an improvement of at least 1.41%, 0.01%,

0.24% in terms of the DSC, ACC, and SEN metrics when compared with 
other state-of-the-art segmentation approaches on the CBIS-DDSM 
database. In addition, there is also an enormous decrease on the ΔA 
and HAU metrics by at least 4.39% and 0.58. It is clear from Table 6 that 
ARF-Net exceeds all the other models in all performance. Compared 

Fig. 10. The visualization results of our proposed MSSM and several counterparts on the INbreast benchmark. The red closed curve delineates the boundary of the 
ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 

Fig. 11. The visualization results of our proposed MSSM and several counterparts on the UDIAT benchmark. The red closed curve delineates the boundary of the 
ground-truth mask, and the green closed curve delineates the boundary of the predicted results. 
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with the other models, the proposed ARF-Net obtains improvements of 
at least 3.26%,0.32%,3.08%, and 0.16% on all evaluation metrics. It is 
more important that our proposed approach obtains a high true positive 
rate (sensitivity), as a false negative will reduce the possibility of early 
diagnosis, detection, and treatment of breast cancer. 

To prove more directly that our proposed model is superior to other 
segmentation networks, we visualize the predicted segmentation results 
of all the models on the CBIS-DDSM, INbreast, and UDIAT databases. 
The red closed curve delineates the boundary of the ground-truth maps, 
and the green closed curve delineates the boundary of the predicted 
results. The visual contrasts of segmentation on the CBIS-DDSM, 
INbreast, and UAIDT benchmarks are displayed in Figs. 6–8, separately. 

From Fig. 6, we can observe that our developed network is not very 
sensitive to the high-density region and the glandular tissue when 
compared with several segmentation approaches. From Fig. 7, we can 
find that our developed network can detect the breast masses of smaller 
size while other segmentation model fails to segment the breast masses 
of smaller size. Moreover, our proposed model can obtain better seg
mentation results of large-size breast masses than other segmentation 
methods. It can be observed from Fig. 8 that our proposed ARF-Net can 
obtain better segmentation results than other methods. 

In conclusion, the quantitative results and qualitative visualization 
show that our designed approach can obtain a better breast mass seg
mentation performance than other segmentation models. 

5.2. Comparison between MSSM and other counterparts 

To demonstrate the effectiveness of the designed MSSM, we build a 
comparison between MSSM and several excellent counterparts including 
SE Module [22] and GCT [62] on the INbreast [36] and CBIS-DDSM [27] 
databases. In order to provide a fair comparison, we first access their 
public implementations and then re-train their models on our databases 
to obtain the segmentation results of compared methods. In the 
following experiments, the MSSM will be replaced by the SE Module and 
GCT, respectively. The experimental results on the INbreast [36], CBIS- 
DDSM [27], and UDIAT [63] benchmarks are displayed in Tables 7–9, 
respectively. 

From Table 7, we can find that the designed MSSM exceeds other 
counterparts and yield an improvement of at least 5.26%, 0.18%,

2.97%, and 0.04% in the field of the DSC, ACC, SEN, and SPE on the 
INbreast dataset. Moreover, the ΔA and HAU metrics of our proposed 
MSSM reduce by at least 3.55% and 0.1 over other counterparts. Table 8 
shows that our proposed model increases by at least 1.71%,0.01%, and 
2.42% in terms of the DSC, ACC, and SEN on the CBIS-DDSM database. 
Our proposed MSSM obtains a massive reduction with the ΔA of 3.17% 
and the HAU of 0.78. From Table 9, we can observe that the MSSM in
creases DSC, ACC, SEN, and SPE by at least 3.25%, 0.28%, 2.14%, and 
0.21%. In particular, compared to several counterparts on the INbreast, 
CBIS-DDSM, and UDIAT databases, our developed MSSM can signifi
cantly improve the true positive rate. 

On the CBIS-DDSM, INbreast, and UDIAT benchmarks, the 

qualitative improvements of our proposed network over other segmen
tation methods are displayed in Figs. 9–11, respectively. The red closed 
curve delineates the boundary of the ground-truth mask, and the green 
closed curve delineates the boundary of the predicted results. 

From Fig. 9, we can find that the designed MSSM can detect the 
masses with smaller size better and is not more susceptible to interfer
ence from the high-density region when compared to the GCT and SE 
module for the CBIS-DDSM database. It can be found from Fig. 10 that, 
on the INbreast database, our developed MSSM can successfully detect 
the breast masses with smaller sizes, but the GCT and SE modules hardly 
detect the small breast mass. However, there are two cases in which the 
pectoral muscle and glandular tissue are mistakenly recognized as the 
masses. From Fig. 11, we can observe that the proposed MSSM can 
obtain better segmentation results than the GCT and SE modules. 
However, there is one case in which the breast fatty tissue is mistakenly 
recognized as the masses. 

In summary, our proposed MSSM is effective for segmentation. 

5.3. Speed analysis 

The frames per second (FPS) is used to measure the speed of the 
model. For a fair comparison, we chose the 256 × 256 as the resolution 
of the input image. We analyze the speed of the model through the 
variations of dice score and sensitivity index. Table 10 presents the 
speed comparison between our method with other approaches on the 
RTX 2080Ti GPU. 

Compared with Attention-UNet, DeepLabv3Plus, and UNetPlusPlus, 
our proposed ARF-Net has lower latency, while having better perfor
mance. For the INbreast, CBIS-DDSM, and UDIAT datasets, the proposed 
ARF-Net obtains improvements of at least 3.3% and 6.01%, 1.45% and 
1.77%, and 7.48% and 3.17% on the DSC and SEN index, respectively. 
Compared with FCN, in spite of higher latency, our proposed ARF-Net 
has better performance. The reasons behind high latency are that our 
proposed method adopts the symmetric encoder-decoder architecture, 
while FCN adopts the asymmetric encoder architecture. On the index of 
the DSC and SEN, ARF-Net obtains improvements of 6.8% and 9.78%,

4.77% and 7.21%, and 4.73% and 5.5% on the INbreast, CBIS-DDSM, 
and UDIAT. Compared with UNet and scSENet, in spite of a little 
higher latency, our proposed method has better performance. The pro
posed ARF-Net obtains improvements of the DSC and SEN of at least 
2.79% and 5.03%, 1.41% and 0.24%, and 3.26% and 3.08% on the 
INbreast, CBIS-DDSM, and UDIAT databases. 

In conclusion, our proposed ARF-Net achieves the state-of-the-art 
segmentation performance with the relatively high speed. 

6. Conclusion 

A novel end-to-end network, ARF-Net for precise breast mass seg
mentation in whole mammograms and ultrasound images, is proposed 
in this work. The ARF-Net consists of an encoder network and a corre
sponding decoder network. The SRFM in ARF-Net can adaptively 

Table 10 
Speed Comparison of our method against other methods. Image size is 256× 256.  

Method INbreast CBIS-DDSM UDIAT ms↓  fps 

DSC(%)  SEN(%)  DSC(%)  SEN(%)  DSC(%)  SEN(%)  

UNet [49] 70.05 70.87 79.41 80.48 80.09 81.31 5.8  171  
Attention-UNet [38] 82.8 79.81 84.3 87.14 80.64 81.09 12.0  83  
DeepLabv3Plus [12] 76.4 72.1 78.59 80.25 77.36 78.09 17.1  58  

FCN [31] 79.3 76.04 80.98 81.7 83.39 83.94 3.8  266  
UNetPlusPlus [19] 81.75 78.25 83.05 86.99 79.45 86.27 8.2  122  

scSENet [50] 83.31 80.79 84.34 88.67 84.86 86.36 6.5  153   

Ours 86.1  85.82  85.75  88.91  88.12  89.44  8.0  125   
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allocate the appropriate sizes of receptive fields for objects of different 
sizes. The SRFM composes of a MRFM for generating multiple receptive 
fields of different sizes and a MSSM for selecting the suitable receptive 
field’s size. The proposed approach is tested on two mammographic 
databases (INbreast and CBIS-DDSM) and one ultrasonic database 
(UDIAT). The experimental results show that the developed network 
exceeds several related methods. Extensive ablation experiments 
demonstrate that our developed ARF-Net exceeds several excellent 
segmentation networks, and our proposed MSSM also exceeds several 
counterparts. In conclusion, our proposed model is of effectiveness. 
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